

Presented by Benjamin Muller

Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric de la Clergerie, Djamé Seddah and Benoît Sagot.

FACEBOOK AI

NLP at INRIA Paris - ALMAnaCH team Who am I?

• Researcher (PhD student) at INRIA in the AlmanaCH project team

What do I do?

• Focus on **transfer learning** for Out-Of-Distribution scenarios (non canonical data, cross-lingual transfer...)

The ALMAnaCH team

- We build **linguistics ressources, data sets**, parsing models, **language models** and release **everything to the public:** Oriented toward **modelling language variability**
- We work with many startups, universities and companies (from Hyperlex to Facebook, from Bar Ilan University to Stanford, part of the PRAIRIE institute)

Outline

- I. Background: NLP & Language Models
- II. What is CamemBERT? (quick demo)
- III. CamemBERT on Downstream Tasks
- IV. CamemBERT in Practice
 - Domain Adaptation
 - In production
- V. NLP Beyond Language Models

What's Natural Language Processing?

NLP aims at structuring language productions

- in **minimal sense unit** : words, morphemes..
- in syntactic unit/relation : subject, verb, object, modifier
- in **semantic unit**: who did what to whom? who did say what?

This structuring implies the definition of these units as well as their scopes

- "word" vs token: chépa, 'la pas [cassé sa pipe] lui deja, wsh⇒
 Typographic segmentation doesn't hold
- regular vs non-canonical syntax: John is tired vs dunno too tired 2think
 ⇒ Who is tired? the speaker or someone else?
- The context of a production: I don't feel that brand and stuff.
 ⇒ What brand? what stuff? who is he answering to?

How does it work?

Using linguistics knowledge. One principle, two schools:

- Building rules (grammars) and associated software.
 ⇒ Old-school approach, costly. Precise but very application-dependant.
- Building annotated data set and supervised models will do the same as (^) but better (need a labelled dataset per task x domain → 1 model per task x domain)
 ⇒ Data-driven approach, we try to generalise the data. Flexible but domain sensitive

No (or much fewer) linguistics knowledge.

(i) Building « nothing » and counting on massive amount of data

to detect regularities, bring out information

→ Unsupervised approach (=no prior linguistics knowledge)

(ii) Using (i) via language models and directly transfer knowledge to specific tasks

→ This is the current NLP revolution

Representing text into vectors

Goal: How to build useful model representation that capture words meaning?

Example: What is the meaning of "bardiwac"?
He handed her a glass of bardiwac.
Beef dishes are made to complement the bardiwacs.
Nigel staggered to his feet, face flushed from too much bardiwac.
Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.
I dined off bread and cheese and this excellent bardiwac

Distributional Hypothesis: "Words in similar context tend to have similar meanings" Haris, 1954

→ idea: Model context to Model words

Brief History of representation models

- Word Embeddings:
 - Word2vec/Glove models build a static vectorial representation of words
 - Fits very well with task-specific deep learning architecture (great precision)
 - **Problems:** What about polysemy ? What to do with a new word ?
- Solution: Contextualized Word Embeddings.
 - Idea: Use a neural language model to provide a context-dependent representation.
 - Many models have appeared: Ulmfit, Elmo, **BERT**...
- Replace task-specific architectures with **Transfer Learning**.
 - **Fine-tuned directly** on downstream tasks.
 - Achieves **state-of-the-art performance** in many tasks.

Outline

- I. Background: NLP & Language Models
- II. What is CamemBERT? (quick demo)
- III. CamemBERT on Downstream Tasks
- IV. CamemBERT in Practice
 - Domain Adaptation
 - In production
- V. NLP Beyond Language Models

Most Ressources and Experiments in English Only

- BERT and variants very impactful but mostly for English
- What about **other languages**?
 - **Only multilingual models** such as mBERT, XLM and XLM-R but mBERT still lagging behind monolingual counterparts.
- Do **BERT performance boosts transfer** to **other languages**?
- → Let's find out on **French** with **CamemBERT**!

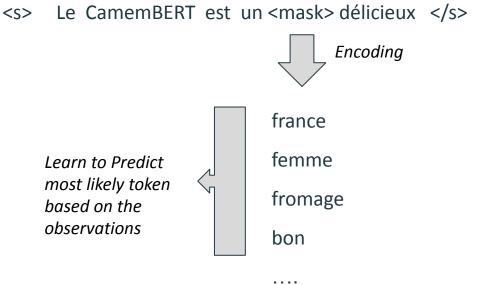
What is CamemBERT?

CamemBERT is a **Transformer-based architecture** trained as a **Mask-Language Model** on **130GB** of French **OSCAR** (web) data

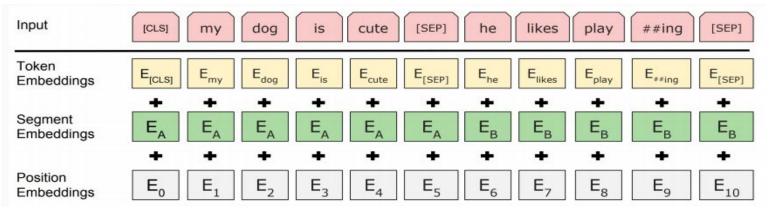
Ref: CamemBERT is based on BERT (Devlin et. al 2018) and Roberta (Liu et. al. 2019)

CamemBERT: Objective Function

- 15% of tokens are MASKED
- The model learns to predict <mask> tokens based on the (bidirectional) context



CamemBERT: Input Representation



(Devlin et. al 2018)

- Text is split with Sentencepiece tokenization (Kudo et. al. 2018):
 Unlikely words are split into sub-words unit ⇒ No Out-of-Vocabulary words
- CamemBERT uses a 32k tokens vocabulary
- Each token is input as the sum of three embedding vectors (position, token, segment)

CamemBERT: Architecture

- A Transformer is a stack of self-attention layers followed by dense layers
- CamemBERT-base is 12 layers CamemBERT-Large is 24 layers
- Non-recurrence operations makes it very computationally efficient (for GPUs)



(Vaswani et al. 2017)

CamemBERT: Trained on Open French Data

CamemBERT is trained on OSCAR.

- OSCAR is a clean extract of Common Crawl (Ortiz et al., 2019).
- Open-source and freely available at <u>oscar-corpus.com</u>.
- French data: 138GB of text, 32.7B tokens, 59.4M documents.
- Heterogeneous data with diverse styles and domains.
- → Very **COSTLY** to train (lots of GPU-hour)

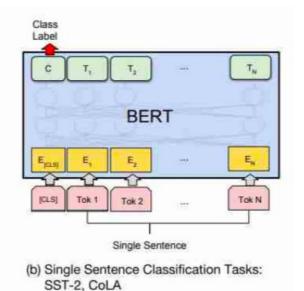
(demo)

Outline

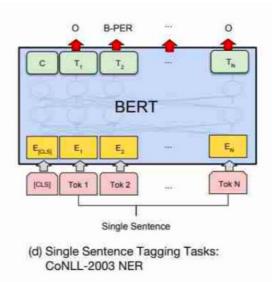
- I. Background: NLP & Language Models
- II. What is CamemBERT? (quick demo)
- III. CamemBERT on Downstream Tasks
- IV. CamemBERT in Practice
 - Domain Adaptation
 - In production
- V. NLP Beyond Language Models

CamemBERT fine-tuning for downstream tasks

Sequence Classification



Sequence Labelling



Evaluation

Tasks and baselines:

- Part-Of-Speech Tagging (POS): mBERT, XLM, UDify, and UDPipe Future
- **Dependency Parsing**: Same as POS tagging
- Named Entity Recognition (NER): CRF, BiLSTM-CRF, and mBERT.
- Natural Language Inference: mBERT, XLM, and XLM-R

Two evaluation settings:

- Fine-tuned: CamemBERT is fine-tuned on the downstream tasks
- As Embeddings: Freeze CamemBERT, use output embeddings as input to another model

Tagging and Parsing: SotA Performance

- Word labelling and structure prediction tasks
- Evaluation on **4** Universal Dependencies **treebanks** of **different genres**.
- Fine-tuned models get **state-of-the-art results** on almost all datasets.
 - Spoken has no punctuation, no uppercasing, much more difficult to

	GSD		SEQUOIA		Spoken		PARTUT	
Model	UPOS	LAS	UPOS	LAS	UPOS	LAS	UPOS	LAS
mBERT (fine-tuned)	97.48	89.73	98.41	91.24	96.02	78.63	97.35	91.37
XLM _{MLM-TLM} (fine-tuned)	98.13	90.03	98.51	91.62	96.18	80.89	97.39	89.43
UDify (Kondratyuk, 2019)	97.83	91.45	97.89	90.05	96.23	80.01	96.12	88.06
UDPipe Future (Straka, 2018)	97.63	88.06	98.79	90.73	95.91	77.53	96.93	89.63
+ mBERT + Flair (emb.) (Straka et al., 2019)	<u>97.98</u>	90.31	99.32	93.81	97.23	<u>81.40</u>	97.64	<u>92.47</u>
CamemBERT (fine-tuned)	98.18	92.57	99.29	94.20	96.99	81.37	97.65	93.43
UDPipe Future + CamemBERT (embeddings)	97.96	90.57	99.25	<u>93.89</u>	<u>97.09</u>	81.81	97.50	92.32

NER, NLI & QA: Drastic Improvements

• Word labelling (NER),

sequence classification (NLI) and QA (FQuAD)

• State-of-the-art results on all tasks.

Model	Acc.	#Params						
mBERT (Devlin et al., 2019)	76.9	175M						
XLM _{MLM-TLM} (Lample and Conneau, 2019) XLM-R _{BASE} (Conneau et al., 2019)	<u>80.2</u> 80.1	250M 270M						
CamemBERT (fine-tuned)	82.5	110M						
Supplement: LARGE models								
XLM-R _{LARGE} (Conneau et al., 2019)	<u>85.2</u>	550M						
CamemBERT _{LARGE} (fine-tuned)	85.7	335M						

NLI

	FQuA	D1.1-test	FQuAD1.1-dev			
Model	F1	EM	F1	EM		
Human Perf.	91.2	75.9	92.1	78.3		
CamemBERT _{BASE}	88.4	78.4	88.1	78.1		
CamemBERT _{LARGE}	92.2	82.1	91.8	82.4		
$FlauBERT_{BASE}$	77.6	66.5	76.3	65.5		
$FlauBERT_{LARGE}$	80.5	69.0	79.7	69.3		
mBERT	86.0	75.4	86.2	75.5		
XLM-R _{BASE}	85.9	75.3	85.5	74.9		
XLM-R _{LARGE}	89.5	79.0	89.1	78.9		

Table 9: Results of the experiments for various monolingual and multilingual models carried out on the training dataset of **FQuAD1.1-train** and evaluated on test and development sets of FQuAD1.1

Model	F1
SEM (CRF) (Dupont, 2017)	85.02
LSTM-CRF (Dupont, 2017)	85.57
mBERT (fine-tuned)	87.35
CamemBERT (fine-tuned) LSTM+CRF+CamemBERT (embeddings)	89.08 89.55

Crucial questions: How Much Training Data?

- 4GB vs. 138GB
- ⇒ Competitive results with as few as 4GB of data for a Base model!

Proves that strong models can be trained even on low resource languages or domain-specific datasets.

Dataset Siz	Size	G	GSD		SEQUOIA		Spoken		PARTUT		AVERAGE		NLI
	SIZE	UPOS	LAS	UPOS	LAS	UPOS	LAS	UPOS	LAS	UPOS	LAS	F1	ACC.
Fine-t	Fine-tuning												
Wiki	4GB	98.28	93.04	98.74	92.71	96.61	79.61	96.20	89.67	97.45	88.75	89.86	78.32
CCNet	4GB	98.34	93.43	98.95	93.67	96.92	82.09	96.50	90.98	97.67	90.04	90.46	82.06
OSCAR	4GB	<u>98.35</u>	<u>93.55</u>	98.97	<u>93.70</u>	<u>96.94</u>	81.97	<u>96.58</u>	90.28	<u>97.71</u>	89.87	<u>90.65</u>	<u>81.88</u>
OSCAR	138GB	98.39	93.80	98.99	94.00	97.17	81.18	96.63	90.56	97.79	89.88	91.55	81.55

CamemBERT, a Useful Resource

- CamemBERT paved the way for other non-english monolingual models.
 - Since pre-publication, many other models have come out (FlauBERT for French, BERTje for Dutch, FinBERT for Finnish, PhoBERT for Vietnamese...).
- CamemBERT models are open-source and ready to use.
 - 100k+ downloads since its released
 - Models used for processing French legal text (Bennesty et al. 2019; Chavallard et al. 2020), French financial data, French Question Answering (d' Hoffschmidt et al. 2020; Keraron et al. 2020)...

CamemBERT in practice: How to use it ?

Check out **camembert-model.fr** for more details!

Available in HuggingFace and Fairseq

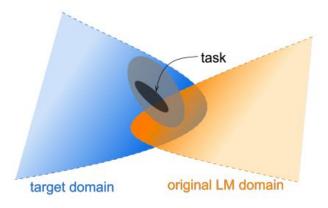
• Easy to load/to fine-tune/for prediction

```
> import torch
> camembert =
torch.hub.load('pytorch/fairseq',
'camembert')
> camembert.eval() # disable dropout
> masked_line = 'Le camembert est <mask> :)'
> camembert.fill_mask(masked_line, topk=3)
[('Le camembert est délicieux :)', 0.4909, '
délicieux'),
 ('Le camembert est excellent :)', 0.1056, '
excellent'),
 ('Le camembert est succulent :)', 0.0345, '
succulent')]
```

CamemBERT for your Domain

"Don't stop pretraining" (Gururangan et al., 2020)

- → Language Models can be adapted by simply fine-tuning them in an unsupervised way using their Mask-Language Model objective on a new domain
- → Improve performance of up to +3 points in downstream classification



CamemBERT in production: How to speed up CamemBERT?

Train a smaller version of BERT using Knowledge Distillation (Hinton 2015, Sanh 2020)

Distillation consists in training a **student model** based on the prediction of a **teacher model**

$$L = -\sum_{i} t_i * \log(s_i)$$

With t the logits from the teacher and s the logits of the student

→ Train a smaller Transformer using CamemBERT as a **teacher** (up to x5 speed up)

→ No Distil-Camembert available <u>for now</u> !

Take Home Message

- **CamemBERT** achieves **state-of-the-art** results in **5 downstream tasks**
 - Surpass multilingual models and confirms what was found for English monolingual language models
- Type of data matters: Pretraining on heterogeneous data is important
 - Common Crawl better than Wikipedia
- Size doesn't matter much: Strong models can be trained with as little as 4GB of raw text
 - Good news for low-resource languages or domain-specific data.
- **Speed-up** possible with more compact distilled models

Beyond Language Modeling

- Current language-model based **pretraining-fine-tuning** is impressive (a single architecture for all tasks)
- A few very large language models trained and shared freely adapted and analysed by the research community and by companies (for how long?)
- Very poor understanding of how and what these models capture: Research in Bertology

What comes next ? scaling even more ?

- Training Ever-Larger Models (Monolingual and Multilingual)
- New framework: Language Models as few shot learners: GPT-3 (x1000 more parameters than Camembert)

But can we learn it all from forms?

- "Language Models do not learn meaning" (Bender et. al., 2020)
- → Multi-Modal approaches (ERNIE Zhang et al. 2019, Hill et. al 2020)

Thank you!